Maxima/Euler's Number
Jump to navigation
Jump to search
Euler's Number with Maxima[edit | edit source]
Main_Page > Maxima > Euler's Number with Maxima
- Euler's number e consideration.
f(dt):=(3^dt-1)/dt;
limit(f(dt), dt, 0);
(%o1) f(dt):=(3^dt-1)/dt
(%o2) log(3)
kill (f,F,dt) $ ct:10 $ f(n,dt):=(n^dt-1)/dt; for n:1 while n<=ct step 1 do ( F[n] : [limit(f(n,dt), dt, 0)], print ("n=",n,"Result: ",float(F[n])) ) $
(%o81) f(n,dt):=(n^dt-1)/dt "n="" "1" ""Result: "" "[0.0]" " "n="" "2" ""Result: "" "[0.6931471805599453]" " "n="" "3" ""Result: "" "[1.09861228866811]" " "n="" "4" ""Result: "" "[1.386294361119891]" " "n="" "5" ""Result: "" "[1.6094379124341]" " "n="" "6" ""Result: "" "[1.791759469228055]" " "n="" "7" ""Result: "" "[1.945910149055313]" " "n="" "8" ""Result: "" "[2.079441541679836]" " "n="" "9" ""Result: "" "[2.19722457733622]" " "n="" "10" ""Result: "" "[2.302585092994046
If n = e (2.718281828459045....) then the result is "1".
%e, numer; f(n,dt):=(n^dt-1)/dt; limit(f(%e,dt), dt, 0),numer;
(%o74) 2.718281828459045 (%o75) f(n,dt):=(n^dt-1)/dt (%o76) 1